Global Climate Observing System (GCOS)

Observing Lakes – an Essential Climate Variable

Dr Stephan Bojinski, GCOS Secretariat 2nd HYDROLARE Steering Committee 15–17 July 2009, St. Petersburg, Russia

> (T) UNEP

ICSU

The Climate System

UNEP

IOC

GCOS Observational Strategy

- Achieving an optimal balance of satellite and in-situ data
- Ensuring data are stable and accurate to allow detection of climate change
- 20 GCOS climate monitoring principles (10 basic + 10 specific for space-based observations)
- Making full use of all available data to achieve a cost-effective global observing system for climate

GCOS Essential Climate Variables (ECVs; 44)

- Priority list of variables to be observed systematically
- Criteria:
 - Global observations feasible (practical, cost-effective)
 - High impact on needs of UNFCCC, climate change assessments (IPCC)
- Review in 2009
 - <u>Atmospheric</u> (16)
 - **Surface** Air temperature, Precipitation, Air pressure, Surface radiation budget, Wind speed and direction, Water vapour
 - Upper Air Earth radiation budget (including solar irradiance), Upper-air temperature, Wind speed and direction, Water vapour, Cloud properties
 - Composition Carbon dioxide, Methane, Ozone, Other long-lived greenhouse gases, Aerosol properties.
 - <u>Oceanic</u> (15)
 - Surface Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Current, Ocean colour (for biological activity), Carbon dioxide partial pressure
 - Sub-surface: Temperature, Salinity, Current, Nutrients, Carbon, Ocean tracers, Phytoplankton
 - Terrestrial (13)
 - River discharge, Water use, Ground water, Lake levels, Snow cover, Glaciers and ice caps, Permafrost and seasonally-frozen ground, Albedo, Land cover (including vegetation type), Fraction of absorbed photosynthetically active radiation (FAPAR), Leaf area index (LAI), Biomass, Fire disturbance, [soil moisture]

Observation networks and systems contributing to the Terrestrial ECVs

CONTRACTOR CONTRACTOR

Example: Lake Area and Level

(Satellite Supplement, GCOS-107, 2006)

Benefits:

- Assessment of changes in regional climate, better knowledge of regional water balance
- Lake area, combined with lake level, gives indication of the volume of the lake-water body, which is an
 integrator variable, reflecting both atmospheric (precipitation, evaporation-energy) and hydrological
 (surface-water recharge, discharge and ground-water tables) conditions

Resolution, Accuracy, Stability:

Level:

- Accuracy: 10 cm with respect to reference geoid; Resolution: <4km horizontal resolution, monthly coverage;
- Stability: 10 cm with respect to reference geoid

Area:

- Accuracy and Stability: 5% (maximum error of omission and commission in lake area maps); location accuracy better than 1/3 of instantaneous field-of-view (IFOV) with 250 m target IFOV
- Resolution: 250 m horizontal resolution, monthly observing cycle, global all-weather coverage

Instruments and datasets:

Fundamental Climate Data Record of appropriate VIS/NIR imagery and radar imagery, for example through:

- Moderate-resolution optical instruments (MERIS/MODIS-class)
- ALOS L-band in ScanSAR mode

Cal/val, archiving needs:

- Calibration will be required against in situ measurements
- Validation by high-resolution imagery (10-30 m) from sample sites and in situ measurements
- No current capability for global data archiving is established; data documentation, availability and distribution by such a centre needs to be established with high priority

Coordination by:

WMO CHy, GCOS TOPC, GTN-H, WCRP GEWEX

Recommendations in GCOS Implementation Plan

Action T5: Create a *lake information data centre*.
 Who: TOPC in consultation with WMO CHy and National Hydrological Services.

Time-Frame: Operational by 2006. **Performance Indicator:** Commitment by host country.

DONE

Action T6: Submit weekly/monthly lake level/area data for the 156 <u>GTN-L</u> lakes to the *International Data Centre*; submission of weekly/monthly altimeter-derived lake levels by Space Agencies to the International Data Centre.

Who: National Hydrological Services, through WMO CHy; Space Agencies; the new global lake information data centre.

Time-Frame: Continuous.

Performance Indicator: Completeness of database: National Communications to UNFCCC

IN PROGRESS; MILESTONES 3,10

Recommendations in GCOS Implementation Plan

Action T7: Submit weekly/monthly lake level and area data measured during the19th and 20th centuries for the 156 GTN-L lakes to International Data Centre.

Who: National Hydrological Services, in cooperation with WMO CHy and the new global lake information data centre.

Time-Frame: Completion of archive by 2009.

Performance Indicator: Completeness of database, National Communications to UNFCCC.

IN PROGRESS; MILESTONES 5,8,11

Action T8: Submit weekly surface and sub-surface water temperature, date of freeze-up and date of break-up of 156 priority lakes in GTN-L.
 Who: National Hydrological Services; Space Agencies in response to request from TOPC through the WMO.

Time-frame: Continuous.

Performance Indicator: Completeness of database, reporting to UNFCCC.

IN PROGRESS

GCOS Progress Report 2004–2008

- Based on 2004 GCOS Implementation Plan:
 - Submitted to COP 10 -> decision 5/CP.10
 - In support of UNFCCC, IPCC
 - 131 recommended Actions in Atmosphere, Ocean, Terrestrial domains
 - To ensure the availability of observations of Essential Climate Variables in support of, *inter alia*:
 - Prediction of global climate change, and attribution of its causes
 - Projection of global climate change information down to regional and local scales;
 - Characterization of extreme events important in impact assessment and adaptation, and to the assessment of risk and vulnerability
 - Mitigation assessment
- Actions on Parties, int'l organizations and other institutions, with: Timelines, Performance Indicators, Costs

GCOS Progress Report 2004–2008 – Terrestrial

- Increasing significance and recognition of terrestrial data for climate change adaptation and impact studies
- Good progress in defining standards for observation of terrestrial variables
- Slow take-up of institutional support for terrestrial climate observations has limited some in-situ progress
- Networks dealt with by research community show some good progress
- Progress towards establishment of Global Terrestrial Networks (GTN) for many of the ECV's
- Good engagement of satellite needs including product development, reprocessing and continuity

GCOS Progress Report 2004–2008 – Summary

- Increasing profile of climate change has reinforced awareness of the importance of a Global Climate Observing System
- Developed Countries have improved their climate observation capabilities, but limited progress in resolving financial issues related to long-term continuity
- Developing Countries have only made limited (in-situ) progress, with decline in some regions, and capacity building support remains small in relation to needs
- Operational and Research Networks show increasing regard to climate needs; long-term continuity a challenge
- Satellite agencies have improved both mission continuity and capability and are increasingly meeting climate needs
- GCOS has progressed, but still falls short of meeting all UNFCCC needs good-moderate

Спасибо!

IOC

GCOS Networks Strategy

CCORD CONTRACTOR CONTR

Baseline Systems

- Globally distributed, limited number of key variables
- High-quality, long-term, consistent, reliable, homogeneous
- Satellite and in situ
- In situ provide calibration/validation for satellite observations

Comprehensive Systems

 All observations that can be used for producing synthesized data sets (assimilation, interpolation, reanalysis)

Reference Networks / Ecosystem Networks

Highly-detailed, accurate observations at a few locations

Research Networks

Detailed data sets for process studies & model evaluation

Thank you

For more information about the GCOS programme please visit our website

http://gcos.wmo.int

Contact Information

GCOS Secretariat c/o World Meteorological Organisation (WMO) 7 bis, Avenue de la Paix P.O. Box 2300 1211 Geneva 2, Switzerland Tel: +41 22 730 80 67 Fax: +41 22 730 80 52 E-mail: gcosjpo@wmo.int

GCOS Progress Report 2004-2008: Remarks

- Climate observations are essential for improving the skill of climate prediction models
- Such models are at the basis of impact, adaptation and vulnerability assessments.

GCOS Progress Report 2004–2008: Atmosphere

Mitigation assessment needs to be based, *inter alia*, upon reliable determination of sources and sinks of greenhouse gases; hence, observations of the changing distribution of these gases are needed.

Good-Moderate Progress

GCOS Progress Report 2004–2008 – Atmosphere

- Good progress with availability, quality and exploitation of data from satellites for climate purposes across the range of ECVs, from basic meteorological variables to radiation and atmospheric composition
- Good progress in general with in-situ meteorological networks, and support through the system improvement programme has helped maintaining a baseline; however, overall progress in developing countries has been limited
- Some specific issues persist (e.g., measurement of precipitation, clouds, snow depth; precipitation data exchange; sunshine obs; metadata)
- Good progress in advancing climate reference networks
- Improved planning and progress with implementation of atmospheric composition networks meeting climate needs

GCOS Progress Report 2004-2008 - Oceans

- Useful progress in almost every action called for in the Plan, but many actions remain incomplete.
- The ice-free upper 1500 m of the ocean are being observed systematically for temperature and salinity for the first time in history.
- Most in-situ networks have made progress (e.g., tide gauges, moored reference sites, tropical moored arrays, full ocean depth observations)
- Most in-situ observing activities continue to be carried out under research agency support and on research programme time limits.
- Important progress in provision of critical ocean satellite data of sea surface ECVs has been made, but not for all variables, and data access remains to be ensured.
- Important progress in development of historical ocean reanalysis and in high resolution ocean forecasting capabilities.
- Promising developments in improved methods and standards will allow wider measurement of biological and chemical ECVs and consideration of new ECVs in the years ahead.
- Data sharing remains incomplete, particularly for tide gauges and biogeochemical ECVs. Data archeology needs to continue.

GCOS Progress Report 2004–2008 – Oceans

GCOS Progress Report 2004–2008 – Cross-cutting

- Good engagement of GCOS IP by GCOS Sponsors and Partners
- Implementation is partial in many/most cases
- Increasing national attention to climate change observation needs, despite remaining gaps in national coordination
- Capacity building activities may have seen some improvement, but overall support to developing countries has fallen well short of needs
- Research networks and systems have been maintained, long-term continuity remains a challenge

GCOS Progress Report 2004–2008 – Cross-cutting

- Good commitment to GCOS climate monitoring principles, and some improvements in data exchange
- Good engagement by satellite agencies
- Reprocessing, Analyses and Reanalysis progressing
- Moderate to good progress in the assembly of historical data records and in acquiring and archiving palaeoclimatic records
- National reports show financial difficulties and limits in most countries

Respon Global Climate Observin

<u>'orward</u>

GCOS Progress Report 2004–2008: Outlook to next 5 years

- The preparation of the 2004-2008 Progress Report has helped to identify a number of important priorities for GCOS for the future, including:
- The urgent need for funding support for implementation of the GCOS Regional Action Plans developed over the period 2001-2006;
- Immediate attention to the design and implementation of the national and local-scale networks needed for impact assessment and adaptation to climate change;
- The appointment of GCOS National Coordinators in many more than the present 14 countries which have well established national coordination arrangements for climate observations;
- Much stronger and higher-level commitment of Parties to the GCOS Cooperation Mechanism for supporting GCOS implementation in developing countries;

GCOS Progress Report 2004–2008: Outlook to next 5 years

- Finding new mechanisms for ensuring sustained long-term operation of essential *in situ* networks, especially for the oceanic and terrestrial domains, that are presently supported from project-timescale research funding;
- Strong support for the further development and promulgation of observational standards for the full range of terrestrial climate variables;
- Continued encouragement for the coordinated implementation and long-term continuity of the crosscutting space-based component of GCOS;
- Strong support for the observational and research-based "Global Framework for Climate Services" proposed for endorsement by World Climate Conference-3;
- Reaffirmation of the value of the UNFCCC National Reports on observations as a mechanism for fostering, focussing and guiding GCOS implementation at the national level.

GCOS Strategy

- Identify observational requirements for climate applications
- Identify networks/systems needed to meet requirements
- Build on existing systems to the extent possible
 - Work with partners (Operational Services, Research Institutions, Archive Centres, Space Agencies, Academia, ...)
- Engage intergovernmental, regional and national bodies
 - Sponsors (WMO, IOC)
 - UNFCCC/Conference of the Parties on 'systematic observation' requirements
 - National and regional entities
 - Group on Earth Observation (GEO)
 - Other organizations, coordination programmes and mechanisms (FAO, G8, 'Acronym soup')
 - Regional Workshops
 - Capacity building; System improvement
- Resource mobilization
 - Seek multi-governmental funding, national support: USA, UK, NZ, AUS, E, CH, D
 - Trust Fund (GCOS Cooperation Mechanism)

Global Climate Observing System (GCOS)

- Since 1992 (after 2nd World Climate Conference)
- To ensure that the data required to meet the needs of users for climate information are obtained and made available for:
 - Climate system monitoring, climate change detection and attribution;
 - Research, modelling and prediction of the climate system;
 - Assessing impacts, vulnerability & adaptation;
 - Application to sustainable economic development.
- Global, long-term, high-quality, sustainable, reliable... data
- Sponsored by WMO, IOC/UNESCO, UNEP, ICSU
- Science panels (Atmosphere, Oceans, Terrestrial), Secretariat, Steering Committee, Experts
- National GCOS coordinators and focal points, National support (e.g., Swiss GCOS Office)

GCOS Milestones

- GCOS Implementation Plan (2004): the roadmap for the global climate observing system in the next 5-10 years (in situ, space-based, models, institutions, agents...)
- September 2006: Publication of GCOS-107 "Systematic Observation Requirements for Satellitebased Products for Climate" ('Satellite Supplement' to GCOS IP)

November 2006:

Climate Information for Development Needs: An Action Plan for Africa (Report and Implementation Strategy)

Global Terrestrial Network Rivers (GTN-R) (380 river gauge stations)

Networks and systems contributing to the Terrestrial ECVs

ECV	Contributing Network(s)	Status of network	Contributing Satellite Data	Status of satellite systems
Snow Cover	WWW/GOS Synoptic Network (depth). Nat'l Networks (depth and snow water equivalent).	Synoptic & nat'l networks signif. gaps and are ALL contracting. / SH not monitored operationally for extent & duration.	Moderate-res optical for extent/duration Passive MW for snow water equivalent.	Moderate resolution optical system follow on is programmed.
Glacier and Ice Caps	GTN-G co- ordinates national monitoring networks	Major geographic gaps need closing esp., for glacier mass balance measurements - inadequate.	Visible and IR high-res. Along track stereo optical imagery SAR. Sat. altimetry	Continuity of high-res optical sat. is lacking. Sat. altimetry res. missions will help.
Greenland & Antarctic Ice Sheets	Radarsat Antarctic MapProj Prog Arctic Reg Clim Assessmnt Inter Trans- Antarctic Scientific Exp	One off research projects	Satellite laser altimetry	Lack of laser altimetry mission continuity.
Permafrost	GTN-P co- ordinates National Monitoring Networks.	Major geographical gaps.	Sat. derived variables are essential (e.g. veg. type, snow cover, water) plus skin temp.	

IOC

UNE