

МЕЖДУНАРОДНЫЙ ЦЕНТР ДАННЫХ ПО ГИДРОЛОГИИ ОЗЁР И ВОДОХРАНИЛИЩ

INTERNATIONAL DATA CENTRE
ON HYDROLOGY OF LAKES AND RESERVOIRS

ЕЖЕГОДНЫЙ ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ

№ 6 2 0 1 6

Уважаемый читатель! Перед Вами очередной, шестой выпуск ежегодного информационного бюллетеня Международного центра данных по гидрологии озёр и водохранилищ (HYDROLARE).

В нём Вы найдете краткую информацию о развитии базы данных и технологического комплекса Центра в 2015 году. Хочу подчеркнуть, что в прошлом году была начата подготовка и загрузка в базу нового вида информации - данных по температуре воды водоёмов, полученных на основании наземных измерений.

О новых возможностях веб-сервиса Hydroweb Лаборатории геофизических исследований океана (LEGOS) при Национальном космическом агентстве Франции (CNES) рассказывает на страницах бюллетеня Ж.-Ф. Крето. В настоящее время спутниковые данные по уровням воды трети озёр, представленных в базе данных Hydroweb, могут предоставляться в оперативном режиме (в течение трёх дней с момента запроса).

Важным событием с точки зрения дальнейшей деятельности Центра явилось пятое заседание Международного научно-координационного комитета HYDROLARE, которое состоялось по традиции в Санкт-Петербурге, Россия, с 29 сентября по 1 октября 2015 года. Информацию о его результатах также можно почерпнуть из материалов бюллетеня.

В заключение, традиционно, от лица персонала Центра выражаю искреннюю благодарность представителям стран, предоставившим данные для включения в базу данных Центра. Любые инициативы в этом направлении со стороны стран – членов ВМО будут всячески приветствоваться.

Начальник Центра, д. г. н., проф. В. С. Вуглинский

W W W. HYDROLARE. NET

Озеро Хенераль-Каррера (Чили), Буэнос-Айрес (Аргентина)

ПОПОЛНЕНИЕ БАЗЫ ДАННЫХ ЦЕНТРА

Е. И. Куприёнок, HYDROLARE, Россия

родолжались анализ и подготовка данных ▲ по гидрологии озёр и водохранилищ, полученных из разных стран (кодирование водных объектов и пунктов наблюдений, преобразование к виду, требуемому для загрузки в базу данных). Подготовлены и загружены в базу данные по уровням воды 220 водохранилищ Австралии за 1990 - 2012 годы, 49 водохранилищ Мексики за 1930 - 2012 годы, шести озёр Швеции за 1858 - 2014 годы, а также соответствующие метаданные по этим водоёмам. После поступления в 2015 году сведений по 14 монгольским озёрам началась подготовка данных по уровням этих озёр. Продолжалась работа по поиску, распознаванию и извлечению данных по уровням озёр и водохранилищ, представленных на сайтах соответствующих служб США, Мексики, Швеции и Словении с последующим анализом этих данных и их подготовкой к загрузке. Многолетние ряды уровней воды Великих озёр (США, Канада) пополнены данными за 2014 год.

По-прежнему все данные, содержащиеся в базе данных Центра, предоставляются пользователям по их запросам. Для удобства пользователей в 2015 году на сайте Центра размещена унифицированная форма запроса, соответствующая системе поиска водоёмов, функционирующей на сайте.

Информация о результатах сбора данных по странам, согласившимся сотрудничать с Центром, представлена в таблице.

Таблица. СОСТОЯНИЕ СБОРА ДАННЫХ

Страна	Результат	Страна	Результат	
ЕВРОПА				
Австрия		Польша		
Азербайджан		Румыния		
Армения		Сербия		
Белоруссия	\bowtie	Словения		
Венгрия		Украина		
Исландия	\bowtie	Финляндия		
Испания	\bowtie	Швейцария		
Кипр	\bowtie	Швеция		
Молдавия	\bowtie	Эстония		
АЗИЯ				
Гонконг	$\bowtie \bowtie$	Китай		
Индия	\bowtie	Монголия		
Казахстан		Таджикистан		
Киргизия		Узбекистан		

Страна	Результат	Страна	Результат	
АФРИКА				
Замбия		Танзания		
Мали				
СЕВЕРНАЯ И ЦЕНТРАЛЬНАЯ АМЕРИКА				
Антигуа и Барбуда		Канада	\bowtie	
Белиз		Мексика		
Доминика		США		
южная америка				
Колумбия		Чили		
АВСТРАЛИЯ И ОКЕАНИЯ				
Австралия	\bowtie			

– данные запрошены

– данные получены

РАЗВИТИЕ ИНФОРМАЦИОННО-ТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА ЦЕНТРА

Л. Н. Баринова, Г. С. Баринова, HYDROLARE, Россия

B²⁰¹⁵ году информационно-технологический комплекс Центра продолжал развиваться. Были решены две задачи.

Во-первых, реализовано построение и отображение на сайте Центра совмещённых хронологических графиков хода уровней воды для тех водоёмов, по которым в базе данных имеются результаты как

наземных, так и спутниковых наблюдений за один и тот же период (Рис. 1).

Во-вторых, была начата подготовка и загрузка в базу данных нового вида информации – средних месячных и максимальных значений температуры воды водоёмов, полученных по результатам наземных наблюдений (Рис. 2). Реализована воз-

можность поиска на сайте Центра обновляемых сведений о наличии таких данных и возможность получения их по запросу.

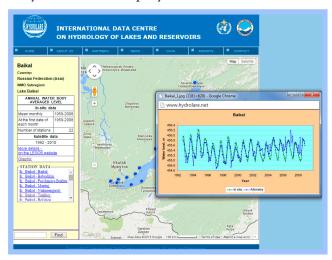


Рис. 1. Совмещённый график хода уровней воды водоёма, полученных по данным наземных и спутниковых наблюдений

Это стало результатом развития всего технологического комплекса Центра.

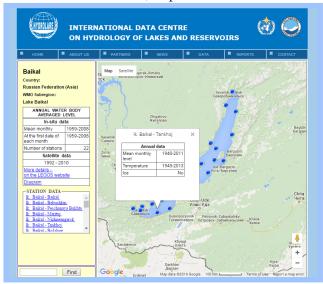


Рис. 2. Отображение на сайте Центра сведений о наличии данных по температуре воды

НОВЫЕ ВОЗМОЖНОСТИ ВЕБ-СЕРВИСА HYDROWEB

Ж.-Ф. Крето, LEGOS/CNES, Франция

абораторией LEGOS (Франция) сайт Hydroweb **/ 1**с соответствующей базой данных были созданы в 2003 году, когда применение спутниковой альтиметрии для мониторинга озёр, рек и водохранилищ было очень ограничено, и спутники использовались в основном для наблюдения за океаном. Однако уже тогда в работах некоторых авторов (Birkett et al., 1995, Crétaux and Birkett 2006) утверждалось, что использование альтиметрии открывает возможности получения дополнительных данных о гидрологическом режиме наряду с результатами наземных наблюдений. В связи с этим важнейшей проблемой стала разработка методики использования высокотехнологичных систем альтиметрических измерений для получения гидрологических данных. В этом контексте база данных Hydroweb была открыта для научного сообщества в целях содействия развитию этой методики и, в первую очередь, для оказания поддержки космическим агентствам, а также для удовлетворения потребностей GCOS и других международных структур в получении гидрологической информации, дополняющей наземные измерения.

В начале 2016 года были осуществлены коренные структурные изменения как самой базы данных Hydroweb, так и режима обработки данных (http://hydroweb.theia-land.fr).

В результате все озёра, представленные в базе данных, были разделены на две группы:

- озёра, по которым данные по уровню воды предоставляются в течение трёх дней (режим operational);
- озёра, по которым такие данные предоставляются, как и раньше, с задержкой от шести месяцев до одного года (режим research).

Первая группа включает около 30% всех озёр, представленных в базе данных. Расчёты уровней воды для этих озёр производятся автоматически.

Процедура подготовки данных для пользователей также претерпела значительные изменения. Теперь водоёмы на сайте отображаются в привязке к тем речным водосборам, на территории которых они находятся (Рис. 3).

Рис. 3. Новая страница сайта Hydroweb (бассейн реки Амазонки). Синими кружками обозначено количество действующих постов на реке, оранжевым – количество постов на реках, связанных с водоёмом

Способ получения информации, размещённой на сайте, в ближайшее время станет более удобным для пользователей: появится возможность выбора данных по группам водоёмов, по периодам наблюдений и т. д. Реализуется автоматическая загрузка данных на сайт при добавлении новых измерений. Сохранится возможность получения данных о площади поверхности и объёме воды в водоёме, как и в предыдущей версии сайта, однако количество водоёмов с такими данными увеличится (Рис. 4).

Обновлённый информационно-технологический комплекс Hydroweb позволит обрабатывать данные спутников как действующих, так и функционировавших в прошлом.

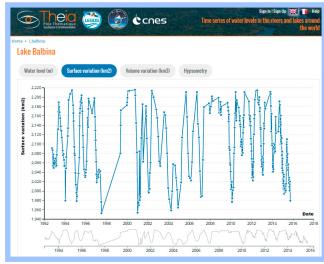


Рис. 4. График площади поверхности водоёма, доступный для скачивания (оз. Балбина в бассейне р. Амазонки)

ПЯТОЕ ЗАСЕДАНИЕ МЕЖДУНАРОДНОГО НАУЧНО-КООРДИНАЦИОННОГО КОМИТЕТА ЦЕНТРА

С. С. Базанова, HYDROLARE, Россия

Пятое заседание Международного научнокоординационного комитета HYDROLARE проходило с 29 сентября по 1 октября 2015 года в ГГИ, Санкт-Петербург.

В заседании приняли участие члены координационного комитета из ВМО, GRDC, ILEC, а также представители Росгидромета и сотрудники Центра.

На заседании обсуждались итоги выполнения плана работ, согласованного на предыдущем заседании, достижения Центра в работе по разным направлениям и перспективы его деятельности.

Участники высоко оценили прогресс в работе Центра, достигнутый за период, прошедший после четвёртого заседания Международного научно-координационного комитета Центра (24 – 26 сентября 2013 года, Санкт-Петербург, Россия).

Среди основных достижений Центра были отмечены:

- значительное пополнение базы данных, в том числе данными, полученными за отчётный период, а также её расширение за счёт нового вида информации температуры воды озёр и водохранилищ;
- информационная интеграция HYDROLARE и Hydroweb, расширение базы данных HYDROLARE за счёт уровней воды, полученных LEGOS по результатам спутниковой альтиметрии;
- проведение международного семинара по мониторингу озёр и водохранилищ в рамках 15-й Всемирной конференции по озёрам (Перуджа, Италия, 2014).

Представитель ВМО Т. Абрате ознакомил участников с последними решениями Конгресса

ВМО и Комиссии по гидрологии, касающимися гидрологии. Он, в частности, подчеркнул роль Центра, наряду с другими центрами данных, в достижении целей устойчивого развития ООН. Центру было предложено рассмотреть возможность регистрации своих данных на соответствующем портале GEO.

С сообщением о развитии программы GCOS выступил В. Грабс (GRDC). Он ознакомил участников с основными результатами деятельности в рамках программы GCOS и отметил важную роль Центра в реализации этой программы.

По поручению представителя Лаборатории LEGOS (Франция) с сообщением о деятельности этой лаборатории выступила С. Базанова. Она представила участникам обновлённый сайт Hydroweb, а также ознакомила участников с предложением LEGOS о привлечении Центра в качестве внешнего эксперта к проекту Европейского космического агентства по созданию новой платформы спутниковых данных по основным климатическим переменным (ECVs), включая уровни озёр.

В ходе совещания были заслушаны презентации и других партнеров Центра – GRDC и ILEC – об их деятельности.

В конце заседания участники согласовали план работы Центра на период 2015 – 2017 годы.

Отчёт о заседании Международного научнокоординационного комитета Центра доступен на официальном сайте: www.hydrolare.net.