

Lakes monitoring from satellite Altimetry and satellite imagery

J-F. Crétaux, W. Jelinski, S. Calmant, M. Bergé-Nguyen, A. Kouraev, M-C Gennero, F Nino, P. Maisongrande & A. Cazenave

Hydrolare Kick off meeting, St Petersburg, July, 15-17, 2009

Principle of altimetry

IONOSPHERE

TROPOSPHERE

DYNAMIC TOPOGRAPHY

GEOID

SURFACE HEIGHT

ELLIPSOID

LASER STATION

DORIS STATION

SATELLITE

Field of applications in Hydrology

Which water bodies?

- Lakes and man made reservoirs
- Big river basins
- Floodplains and temporary lakes

Which objectives ?

- Survey of inter-annual water level variations
 Global scale and local water budget
- Cartography of floodplain dynamics
- Assimilation in hydrodynamical models
- Cal/Val of space missions
- setting up global terrestrial database

Which remote sensing technics involved?

- Laser and Radar altimetry
- Multispectral optical and IR imagery

Potential scientific application for RS

Date (year)

Date (year)

Date (year)

Altimetry over lakes: comparison with In Situ data (1/2)

Lake Victoria, In Situ / Altimetry

Lake Superior In Situ / altimetry

Lake Victoria, scatter of In Situ / Jason-1

Altimetry over lakes: comparison with In Situ data (2/2)

Lake name	Country	Size of the lake (km2)	RMS of the differences In Situ / altimetry level (cm)
Erie	USA, Canada	25821	5
Issykkul	Kyrgyzstan	6236	4
Kariba	Zambia, Zimbabwe	5400	24
Mar de Chiquita	Argentina	6000	13
Powell	USA	380	80
Superior	USA, Canada	82367	4
Titicaca	Peru, Bolivia	8372	17
Victoria	Tanzania, Uganda, Kenya	68800	3

For the biggest lakes (Victoria, Superior and Erie) the accuracy is better than 10 cm, the intermediate (Kariba, Mar de Chiquita, and Titicaca) the accuracy is at the decimetre level, while for some small water bodies, as Lake Powel it is closer to 1 meter, particularly due to the fact that this lake is long but very thin. The Lake Issykkul which is an intermediated lake in size, presents surprisingly very accurate results. Dissemination of altimetry and RS products Hydroweb/Hydrolare database

Currently:

Free access and download of water level variations for 150 lakes & reservoirs More than 300 virtual stations on rivers Updating every year

Objectives:

Doubling the number of water bodies for level and surface variations Operational data center (automatic monthly update) in the frame of Hydrolare

Current use of Hydroweb

Interest for scientific community and others

Central Asian river's flow is changed by acceleration of glaciers melting, variability in rain regime, irrigation and artificial reservoirs regulation under interstate agreements. Complex system, hard political framework, and lack of ground network for free water information delivery and sharing. 5 countries with around 50 million of people leaving.

Continuous monitoring of large number of lakes and reservoirs Where no in situ gauges are available

NEW HYDROWEB FOR LAKES SURVEY

Essential Climate Variable (ECV) defined by GCOS: list of products

Products T1.1: maps of lakes in the Global Terrestrial Network for Lakes (GTN-L)

Gridded georef maps of 250 m spatial resolution on monthly basis for 150 lakes With accuracy of 5%

20 lakes surface water extent has been collected from: ASAR, MODIS, LANDSAT, CBERS, Bathymetry maps, and SRTM Only 4-5 images per lakes from min value to max value over historical evolution of each lake Calibration & comparison has been performed

Products T1.2: Lake levels of all lakes in the GTN-L list

10 cm of accuracy and stability on weekly/monthly basis Time series based on radar altimetry and in-situ gauges

Radar altimetry over 150 lakes with 5 to 50 cm of accuracy depending Of size of the lake including ~40 lakes of the GTN-L

Selection of maps + level from altimetry => hypsometry curve (dh/dS) => Reconstruction of past surface variations on weekly/monthly basis through altimetry

Prototype of new Hydroweb page for a given lake

Sarykamish level variation from satellite altimetry

Surface variation of Sarykamish

Lake Mar de Chiquita

Landsat, CBERS, and modis images, In situ level, radar altimetry over 15 years and laser altimetry over 5 years (Icesat)

ALTIMETRY METHOD: 2

Observations from T/P (a), Jason-1 (b), ENVISAT (c) and GFO (d) for the Northern Caspian, and observations from T/P for the Aral sea (e), Baikal (f), Ladoga (g) and Onega (h) Lakes

Combining benefits of the two platforms

Working at 5 days resolution (pentads)

Freezing of the Ladoga Lake - a sequence of four pentads during winter 2002/03

SSM/I - wide spatial coverage, high temporal resolution Altimetry - high radiometric and along-track spatial resolution

Resulting time series of ice events

BAIKAL LAKE: EXTENDING HISTORICAL

Good relation with historical data

Extension of existing time series, creation of new ones

A recent tendency for colder winters

Earlier ice formation, later break-up, longer fast ice duration

New long-term tendency or short-term fluctuation? Ice formation and break-up, and fast ice duration for southern and northern Baikal

<u>ARAL SEA: Difference between Large and</u> <u>Small Aral</u>

Duration of ice events period, days.

Hydrometeorological stations data (after Atlas of Aral sea ice, 1970): a) Sarychaganak, thin black line, b) Uyaly (sea), thin black line with crosses, c) Barsakel'mes, thick black line. Average dates for the whole Aral sea (after Bortnik and Chistyaeva, 1990),(d, thick grey line). Satellite derived data for Eastern part of the Big Aral (e, thick black line) and Small Aral (f, thin black line) and associated error bars

Next phases of implementation

Hypsometry curve has been estimated for 20 lakes & reservoirs
150 lake levels are currently updated in Hydroweb
An in situ data base is under development at SHI in St Petersburg for the Hydrloare Project (level, surface temperature, phenology of lake ice, etc.)

⇒ Extraction of RS images for all lakes in the GTN-L list ⇒ Comparison of in situ level in the frame of cooperation with Official Hydrolare data centre (under the support of GEO & WMO) ⇒ Estimation of hypsometry of each lake

 \Rightarrow Participation in the Hydrolare steering comitee

 \Rightarrow New pages on the web site and NRT product delivery for lakes level, surface, and volume variations

 \Rightarrow Regular Updating of data centre web pages in the frame of Hydrolare project:

Delivery of various products & information from RS and In situ Data, for each lakes of the GTN-L (and also others)

CONCLUSIONS

Altimetry is a usefull and promising technique for lake's monitoring

> Precision of few centimeters
> multi-year time series availability
> observation of large number of lakes
> Provide reliable data for water mass balance in remote areas
> Possibility to combine with other RS data
> global database for lakes, rivers & floodplains in NRT mode of operation in development